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Abstract
Entanglement catalysis is a phenomenon that usually enhances the conversion
probability in the transformation of entangled states by the temporary
involvement of another entangled state (so-called catalyst), where after the
process is completed the catalyst is returned to the same state. For some pairs
of bipartite pure entangled states, catalysis enables a transformation with unit
probability of success, in which case the respective Schmidt coefficients of the
states are said to satisfy the trumping relation, a mathematical relation which
is an extension of the majorization relation. This paper provides all necessary
and sufficient conditions for the trumping and two other associated relations.
Using these conditions, the least upper bound of conversion probabilities using
catalysis is also obtained. Moreover, best conversion ratios achievable with
catalysis are found for transformations involving many copies of states.

PACS numbers: 03.67.Mn, 03.65.Ud

1. Introduction

A major problem in quantum information theory is to understand the conditions for
transforming a given entangled state into another desired state by using only local quantum
operations assisted with classical communication (LOCC). Significant development has been
achieved for the case of pure bipartite states. Bennett et al have established the entropy of
entanglement as the sole conversion currency in the asymptotic case, where essentially an
infinite number of copies of states are transformed into each other [1]. In this case, conversion
is possible as long as the entropy of entanglement decreases with the fractional drop in that
quantity and the failure probability can be made desirably small and the fidelity between the
final state and the desired target state can be made desirably large.

Away from the asymptotic limit, where a single copy of a given state is to be transformed
into another given state, such a simple conversion criterion cannot be found and investigations
have unearthed a deep connection of the problem to the mathematical theory of majorization
[2]. For setting up the necessary notation, the following definitions need to be introduced
first. For two vectors x and y with n real elements, we say that x is super-majorized by y
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(written x ≺w y), if Fm(x) � Fm(y) for all m = 1, 2, . . . , n. Here,

Fm(x) = x
↑
1 + x

↑
2 + · · · + x↑

m (1)

denotes the sum of the smallest m elements of x, where x↑ is the vector x with all elements
arranged in a non-decreasing order

(
x

↑
1 � x

↑
2 � · · · � x

↑
n

)
. If, in addition to these, the two

vectors have the same sum (Fn(x) = Fn(y)) then we say that x is majorized by y (written
x ≺ y).

Given two entangled states in the Schmidt form,

|ψ〉 =
n∑

i=1

√
xi |iA ⊗ iB〉, (2)

|φ〉 =
n∑

i=1

√
yi |i ′A ⊗ i ′B〉, (3)

where x and y are the respective Schmidt coefficients
(∑

xi = ∑
yi = 1

)
, the problem

is essentially to determine the probability that |φ〉 can be obtained by LOCC starting from
the state |ψ〉. As two entangled states with the same Schmidt coefficients are equivalent
under local unitaries, the probability depends only on the Schmidt coefficients and not on the
particular local orthonormal bases in which they are expressed. For that reason, the conversion
probability of |ψ〉 into |φ〉 will be simply denoted by P(x → y).

The most important step in the solution of this problem is taken by Nielsen who has shown
that |ψ〉 can be converted into |φ〉 with certainty, i.e. P(x → y) = 1, if and only if x ≺ y [3].
Subsequently, Vidal has obtained the expression

P(x → y) = min
1�m�n

Fm(x)

Fm(y)
, (4)

for the conversion probability between two arbitrary states [4]. Note that the conversion
probability is equal to the largest value of λ such that x is super-majorized by λy, i.e.

P(x → y) = max{λ : λ � 0, x ≺w λy}, (5)

where λy denotes the vector obtained by multiplying each element of y with λ.
Soon afterwards, Jonathan and Plenio have demonstrated an interesting effect that is

termed as catalysis or entanglement-assisted local transformation [5]. If an additional
entangled pair (a catalyst) shared by the same parties is involved in the transformation
process in such a way that it reappears in the same form at the end, then the conversion
probability is improved in some cases. To be explicit, let |χ〉 = ∑N

�=1
√

c�|�A ⊗ �B〉
be the state of the catalyst which is shared by the same parties. For some cases, even
though |ψ〉 to |φ〉 conversion only proceeds with a probability smaller than 1, the state
|ψ〉 ⊗ |χ〉 can be converted into |φ〉 ⊗ |χ〉 with certainty (in terms of Schmidt coefficients,
we have P(x ⊗ c → y ⊗ c) = 1 and P(x → y) < 1). In such a transformation,
the entanglement of the catalyst |χ〉 is not consumed, even though it takes part in the
transformation. Catalysis is also helpful in probabilistic transformations; in a large number of
cases, we have P(x ⊗ c → y ⊗ c) > P (x → y).

Subsequently, a lot of research has been directed to understanding the catalytic
transformations [6]. A big impediment in most of these studies is the absence of strong
results on majorization and tensor products. One purpose of this paper is to partially remove
this obstacle. In doing so, two major problems in entanglement catalysis, which are described
below, will be solved.

One problem is to determine when catalysis enables us to carry out a transformation with
certainty. Nielsen has suggested the following notation for this purpose: for two n-component
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vectors x and y we say that x is trumped by y (written x ≺T y) when there is a vector c (a
catalyst), consisting only of positive numbers, such that x ⊗c ≺ y ⊗c. Detailed investigations
of the mathematical properties of the trumping relation indicate a very rich structure [7]. It is
found that, for example, when catalysis is useful for a final state y, then it is possible to find
possible initial states which require catalysts having arbitrarily large Schmidt numbers.

The problem at hand can also be equivalently posed as finding all necessary and sufficient
conditions for the x ≺T y relation. Such conditions have been found only for four component
states having two component catalysts [8]. Recently, partial solutions to this problem have
been obtained by Aubrun and Nechita, who determined the closure of the set of vectors
trumped by a fixed final state [9, 10]. But, since the closure is on a space of vectors which
have a larger number of components than the final state, the conditions they have found are
incomplete.

It is also of some interest to see how far the conversion probability can be improved for
cases where catalysis cannot achieve a conversion with certainty. A problem that is investigated
in detail is to find cases where catalysis is useful, i.e. P(x ⊗ c → y ⊗ c) > P (x → y) for
some c, and to find algorithms for searching possible catalysts for this purpose [11, 12]. The
second problem to be solved in this paper is the determination of the least upper bound on
conversion probabilities involving a catalyst, i.e. Pcat(x → y) = supc P (x ⊗ c → y ⊗ c),
where the supremum is taken over all finite vectors, c, of positive numbers. In other words,
for any probability smaller than (in some cases, equal to) this quantity, it is possible to find a
catalyst that achieves a transformation with that probability. However, such transformations
do not conform fully with the spirit of catalysis. Although the catalyst can be recovered when
the transformation is successful, when it fails the catalyst will also be lost, at least partially.
The author is not aware of any studies on catalytic conversions where recovery upon failure
is also taken into account; apparently this is a very complicated problem. However, the
determination of Pcat(x → y) can be seen as a first step towards such studies as that quantity
can be used as an upper bound (but not least) on maximum probability that can be achieved
with true catalysis.

That quantity can be expressed in a simple way by introducing another mathematical
notation. For two n-element vectors x and y we will say that x is super-trumped by y

(written x ≺w
T y) when there is a catalyst c, consisting only of positive numbers, such that

x ⊗ c ≺w y ⊗ c. In that case, Pcat can be expressed as

Pcat(x → y) = sup
{
λ : λ � 0, x ≺w

T λy
}
. (6)

As a result, finding all necessary and sufficient conditions for x ≺w
T y will enable us to compute

this quantity.
This paper provides the needed necessary and sufficient conditions for both the trumping

and super-trumping relations. The organization of the paper is as follows. Section 2 expresses
the theorems that provide all of the necessary and sufficient conditions for the relations
defined above and an additional relation which is introduced for the sake of completeness. In
section 3, two key lemmas are proved. The succeeding three sections are devoted to the proofs
of the theorems about these relations. Section 7 discusses some immediate conclusions that
can be drawn from these theorems and finally section 8 contains brief conclusions.

2. Catalytic majorization

First, a few statements must be made about the trumping and super-trumping relations. As the
applications in the quantum information theory is the main concern, only vectors with non-
negative elements will be considered. For comparing two vectors with unequal lengths, zeros
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should be padded to the shortest vector to make them of equal length. As either x ≺w y or
x ≺ y or the associated trumping relations imply that the number of zero elements of x is less
than that of y, the corresponding zeros can be dropped from both vectors. As a result, it can
be assumed that x does not have any zero elements. This step will be necessary for comparing
the conditions given below. Note that, in view of the connection with the entanglement
transformations, the vector x in here will be associated with the Schmidt coefficients of the
initial state. As a result, x has no zero elements while y may have some which correspond to
the fact that the Schmidt number cannot increase in an entanglement transformation (with or
without catalysis).

If x ≺w
T y, then it necessarily follows that

∑
xi �

∑
yi . In the special case where the

vectors have the same sum
(∑

xi = ∑
yi

)
, the relation x ≺w

T y is equivalent to the trumping
relation x ≺T y. In other words, the trumping relation is a special case of the super-trumping
relation. However, it appears that the two cases for sums (strict inequality and equality) have
quite different necessary and sufficient conditions. First, we start with the equality case, which
is covered by the following theorem.

Theorem 1. For two n-element vectors of non-negative numbers x and y such that x has
non-zero elements and the vectors are distinct (i.e. x↑ �= y↑), the relation x ≺T y is equivalent
to the following three strict inequalities:

Aν(x) > Aν(y), ∀ν ∈ (−∞, 1), (T1)

Aν(x) < Aν(y), ∀ν ∈ (1, +∞), (T2)

σ(x) > σ(y). (T3)

Here, σ denotes the function

σ(x) = −
n∑

i=1

xi ln xi, (7)

which gives the entropy of entanglement in the case the vector x is normalized. However, for
checking condition (T3), normalization is not necessary. Moreover, Aν denotes the νth power
mean of vectors, i.e. for x, it is defined as

Aν(x) =
(

1

n

n∑
i=1

xν
i

) 1
ν

, (8)

and similarly for Aν(y). This is a bounded, continuous function of ν. It has the limits
A−∞(x) = x

↑
1 , the minimum element, and A+∞(x) = x

↑
n , the maximum element of x. For

the particular value ν = 0, it gives the geometric mean A0(x) = (∏
xi

)1/n
. Note that, if any

element of the vector y is zero, then Aν(y) = 0 for all ν � 0. In that case, conditions (T1)
should only be checked for 0 < ν < 1.

By the continuity of the power mean function against ν, the requirement that the vectors
x and y have the same sum is included in conditions (T1) and (T2). Moreover, the limits of
these inequalities at ν = −∞ and ν = +∞ imply that the minimum and maximum elements
of the vectors satisfy the respective inequalities x

↑
1 � y

↑
1 and x

↑
n � y

↑
n , but these do not have

to be strict.
Conditions (T1)–(T3) could have been expressed using power sums, �ν norms or Renyi

entropies. But, the well-defined behavior of the power means at ν = 0 is the main reason
why they are preferred (the associated strict inequality will be used in the proofs). However,
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it should be noted that all of these three conditions can be expressed simply as the positivity
of the expression

�Rν = 1

ν − 1
ln

Aν(y)

Aν(x)
= σν(x) − σν(y)

ν
(9)

for all finite values of ν, where σν represents the Renyi entropy

σν(x) = 1

1 − ν
ln

(
n∑

i=1

xν
i

)
, (10)

where it is understood that an appropriate limit should be taken for �Rν at ν = 0. Moreover,
the definition of the Renyi entropy is extended to negative powers ν, but some care is needed
for such cases as the number of components n plays a crucial role. If y has some zero
components, then σν(y) should be taken as +∞ for all ν � 0.

Power means also have the following valuable feature: as a function of the vector x,Aν(x)

is convex for ν > 1 and concave for ν < 1. The simplest way to see this is to compute the
second derivative

d2

dt2
Aν(x + tz)

∣∣∣∣
t=0

= (ν − 1)Aν(x)(〈u2〉 − 〈u〉2), (11)

where ui = zi/xi and the averages are taken with weight factors xν
i . If x is constrained to

a subspace of real vectors with a fixed sum, then Aν(x) is strictly convex or concave in the
associated regions. In view of conditions (T1)–(T3), this property of the power mean function
conforms well with the convexity of the set of vectors trumped by a fixed vector y.

Conditions (T1)–(T3) imply that the statement x⊗k ≺T y⊗k for any integer k is equivalent
to x ≺T y. Some of the results in [13] about the connection between the multiple-copy
entanglement transformation, a related phenomenon discovered by Badyopadhyay et al [14],
and the trumping relation can then be easily understood. In other words, if k copies of a state
with coefficients x can be transformed into k copies of another state with coefficients y, either
with or without catalysis, then x must be trumped by y.

Next, we consider the super-trumping relation, x ≺w
T y, for the case where the vectors

have different sums. The necessary and sufficient conditions for this case appear to be only
the first set of strict inequalities.

Theorem 2. For two n-element vectors x and y of non-negative numbers such that x has only
positive elements and

∑
xi >

∑
yi , the relation x ≺w

T y is equivalent to the conditions (T1).

Again, all inequalities in (T1) are strict. The end point ν = −∞ is not included in these
conditions, but from the limit, it can be found that a non-strict inequality, i.e. x

↑
1 � y

↑
1 , is

satisfied at that point. The other end point ν = 1 has the strict inequality, A1(x) > A1(y), but
this case is covered by the assumptions of the theorem.

Although it will not be used for the applications in entanglement transformations, a third
theorem related to the sub-majorization relation must be given for the sake of completeness.
For two vectors x and y of n elements, we say that x is sub-majorized by y (written x ≺w y)
if x

↓
1 + x

↓
2 + · · · + x

↓
m � y

↓
1 + y

↓
2 + · · · + y

↓
m for all m = 1, 2, . . . , n. Here, x↓ represents the

vector x with all elements arranged in a non-increasing order. Similarly, we will say that x is
sub-trumped by y (written x ≺wT y) when there is a catalyst c such that x ⊗ c ≺w y ⊗ c. In
such a case, we have

∑
xi �

∑
yi with the equality case being equivalent to x ≺T y. The

following theorem covers the strict inequality case.

Theorem 3. For two n-element vectors x and y of non-negative numbers such that
∑

xi <∑
yi , the relation x ≺wT y is equivalent to conditions (T2).
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Similar comments apply for the inequalities at the end points of (T2). The ν = +∞ limit
gives x

↓
1 � y

↓
1 , a non-strict inequality, and at ν = 1 we have A1(x) < A1(y), which is covered

by the assumptions. Note that in this case, any of the vectors x or y might have more zeros
than the other.

Although the trumping relation is a special case of the super-trumping and sub-trumping
relations, the necessary and sufficient conditions for the trumping relation cannot be obtained
by simply extrapolating those for the other two relations. The condition for the positive drop
in the entropy of entanglement (T3) is independent of the other two conditions (T1) and (T2);
it cannot be derived starting from these. Perhaps the simplest counterexample is the following:

y = 1
96 (u8 ⊕ 4u18 ⊕ 16u1), (12)

x = 1
96 (2u20 ⊕ 8u7), (13)

where um denotes a uniform vector of m elements consisting of only 1’s and ⊕ denotes the
concatenation of the vectors. Here, x and y are normalized vectors consisting of n = 27
elements. It can easily be checked that x and y satisfy both of the conditions (T1) and
(T2), but condition (T3) is not satisfied as they have equal values for the entropy function,
σ(x) = σ(y) = (17/6) ln 2 + ln 3. As a result, the pair x and y does not satisfy any of the
trumping relations, i.e. x ⊀T y, x ⊀w

T y and x ⊀wT y.
The proofs of all of these three theorems are lengthy and will be done in separate sections.

The following properties of the majorization and trumping relations will be used occasionally
in the proofs [2].

(1) All of the majorization relations ≺,≺w and ≺w, and the corresponding trumping relations
≺T ,≺w

T and ≺wT are partial orders on vectors with n-elements (up to equivalence under
permutation of vector elements).

(2) If two vectors satisfy a particular majorization relation, then the corresponding trumping
relation will also be satisfied (with any vector being a possible catalyst), e.g., x ≺w y

implies x ≺w
T y.

(3) If x̄ and x are vectors such that x̄i � xi for all i, then it necessarily follows that x̄ ≺w x

and x ≺w x̄.
(4) For any vector x, we define the characteristic function

Hx(t) =
n∑

i=1

(t − xi)
+, (14)

where (α)+ = max(α, 0) denotes the positive-part function. For non-negative vectors x
and y, the relation x ≺w y can be equivalently stated as

Hx(t) � Hy(t), ∀t � 0. (15)

Moreover, if the vectors are distinct, i.e. x↑ �= y↑, then the difference Hy(t) − Hx(t) is
strictly positive for some interval in t. If the vectors have the same sum,

∑
xi = ∑

yi ,
then (15) is equivalent to x ≺ y.

(5) A different characteristic function, H ′
x(t) = ∑

(xi − t)+, has to be used for the sub-
majorization relation. When x and y are non-negative, the relation x ≺w y is equivalent
to

H ′
x(t) � H ′

y(t), ∀t � 0. (16)
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(6) If x ≺ y, then for any convex function f , we have
n∑

i=1

f (xi) �
n∑

i=1

f (yi). (17)

Moreover, if x↑ �= y↑ and f is strictly convex, then the inequality above is strict.
(7) For the tensor-product of two vectors, we have Hx⊗c = ∑

� c�Hx(t/c�).
(8) Concatenation or removal of identical numbers to or from two given vectors does not

change the majorization or trumping relation between them (e.g., if z is a vector of positive
numbers, then the statement x ≺ y is equivalent to x ⊕ z ≺ y ⊕ z, and similarly for all the
other relations). Moreover, all of the inequalities in (T1)–(T3) are also unchanged under
such concatenation and removals. This enables us to supply the proofs of these theorems
only for the special case where x and y have no common elements and then generalize it
to arbitrary vectors. Such an assumption will be made whenever it is convenient.

3. Two key lemmas

The proofs of the theorems stated in the previous section need the solution of the following
problem. Let γ (s) = ∑N

m=0 γmsm be a real polynomial where some of the coefficients γm might
be negative. The problem is to express γ as a ratio of two polynomials as γ (s) = b(s)/a(s),
where a and b have non-negative coefficients. Additionally, it is also required that the
coefficients of a are integers. It is obvious that if that problem has a solution, then γ should
have no positive root. The following lemma shows that this condition is also sufficient.

Lemma 1. Let γ (s) be a polynomial such that γ (s) > 0 for all s > 0. Then,

(a) γ (s) can be expressed as γ (s) = b(s)/a(s), where a(s) and b(s) are polynomials with
non-negative coefficients;

(b) moreover, a(s) can be chosen as a polynomial with integer coefficients.

Proof. The proof of part (a) will first be given for a quadratic polynomial with complex roots.
The general case follows easily once this is completed.

Consider γ (s) = 1 − 2ξs + λs2, where λ > ξ 2. Obviously, for ξ � 0 there is nothing to
be proven, so consider ξ > 0 for the following. Let N be an integer sufficiently large so that

1

4

(
(2N)!

N !2

) 1
N

� ξ 2

λ
. (18)

Such an N can always be found as the left-hand side has limit 1 as N → ∞ and the right-hand
side is strictly less than 1. In that case, the polynomials

a(s) =
2N−1∑
k=0

(1 + λs2)k(2ξs)2N−1−k, (19)

b(s) = (1 + λs2)2N − (2ξs)2N, (20)

satisfy the desired properties. All coefficients of a are obviously non-negative. That is true for
b as well, since the coefficient of s2N is λN(2N)!/N !2 − (2ξ)2N which is also non-negative
by the special choice of N.

Now, consider an arbitrary polynomial γ which satisfies the conditions of the lemma.
Express γ as a product of its real irreducible factors as

γ (s) = Asr
∏

i

(1 − ζis)
∏

i

(
1 − 2ξis +

(
ξ 2
i + η2

i

)
s2

)
, (21)
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where A > 0, r (� 0) is the multiplicity of a possible root at 0, 1/ζi are the real roots and
(ξi ± iηi)

−1 are the complex roots of γ . Since γ has no positive root, ζi < 0 for all i. As
a result, the product of linear factors of γ is a polynomial with non-negative coefficients.
Finally, each quadratic factor with complex roots can be written as a ratio of polynomials with
non-negative coefficients. As the product of such polynomials has non-negative coefficients,
the statement in part (a) follows.

For the proof of part (b), it will be assumed without loss of generality that γ has no root
at 0. In that case, a(s) and b(s) can be chosen to have non-zero constant terms. Before passing
on to the proof, it will first be shown that b(s) can be chosen such that all of its coefficients
are strictly positive. Consider a degree m solution for b(s), i.e. b(s) = ∑m

k=0 bks
k where

b0 > 0, bm > 0 and bk � 0 for all 1 � k < m. Let e(s) = 1 + s + · · · + sm−1. Then e(s)b(s)

is a polynomial with degree 2m − 1 and all of its 2m coefficients are positive. Moreover,
the polynomials e(s)b(s) and e(s)a(s) satisfy the conditions of part (a). This shows that the
polynomial b(s) can be chosen to have non-zero coefficients.

For the proof of part (b), suppose that b(s) is a degree m polynomial with positive
coefficients and let β = min0�k�m bk be the minimum of those. Let

ε = β∑
k|γk| , (22)

where γk are the coefficients of the polynomial γ (s). Define a new polynomial ā(s) such that
it has the same degree as a(s) and its coefficients are chosen from rational numbers such that

|āk − ak| � ε, k = 0, 1, . . . , N, (23)

where āk and ak are the coefficients of ā(s) and a(s) respectively. As the rational numbers are
dense, this can always be done. If ā(s)γ (s) = b̄(s), then the coefficients of b̄(s) satisfy

b̄k − bk =
∑

�

(ā� − a�)γk−� � −ε
∑

�

|γ�| = −β. (24)

Therefore, b̄k � bk − β � 0, i.e. b̄(s) has non-negative coefficients as desired. Multiplying
ā(s) by the common denominator of its coefficients gives a polynomial with integer
coefficients. �

Our next job is to generalize lemma 1 to cases where the polynomial γ has a positive
root. In that case, a(s) and b(s) cannot be polynomials and should be expressed as infinite
series. Although the relation a(s)γ (s) = b(s) could be satisfied as formal power series, for
the purposes of this paper, these two series will be required to have a sufficiently large radius
of convergence. For example, it can be required that a(R) and b(R) are convergent where R
is a positive number. The following lemma gives the solution to this problem.

Lemma 2. Let R > 0 and γ (s) be a polynomial such that γ (s) > 0 for all s ∈ (0, R]. Then,

(a) it is possible to find two non-zero power series, a(s) = ∑∞
m=0 amsm and b(s) =∑∞

m=0 bmsm, such that (i) am � 0 and bm � 0 for all m, (ii) a(R) and b(R) are
convergent and (iii) γ (s) = b(s)/a(s);

(b) the series a(s) can be chosen such that all series coefficients, am, are rational numbers;
(c) moreover, if R > 1, then the series a(s) can be chosen such that (b) is satisfied and the

value a(1) is a rational number.

Proof. For part (a), express γ as a product of its real irreducible factors as in (21). It is sufficient
to show that each linear factor with a positive root can be expressed as a ratio of two series
satisfying the desired conditions. For this purpose, consider γi(s) = 1 − ζis, where ζi > 0.
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As γ has no root in (0, R], we necessarily have ζiR < 1 and therefore γi(s) = bi(s)/ai(s)

where bi(s) = 1 and

ai(s) = γi(s)
−1 =

∞∑
m=0

ζm
i sm, (25)

which is convergent at s = R and has positive coefficients. As the product of power series
convergent at R is also convergent at R, and the rest of the factors in (21) are covered by
lemma 1, we reach to the desired result.

For the rest of the lemma, it is sufficient to prove part (c), as a special case of the proof
will give part (b). First, note that if the series a(s) and b(s) are a solution of the problem, then
for any series e(s) with non-negative coefficients, e(s)a(s) and e(s)b(s) are also a solution. It
will be shown that e(s) can be chosen such that all requirements in part (c) are satisfied. Let
a(s) be an arbitrary solution such that a0 = 1. Let λ be a positive number such that eλa(1) is
a rational number and let gn = λn/n!. The series coefficients em will be defined as follows:
choose e0 = 1 and, successively for all m > 1, choose em in the interval [Gm,Gm + gm] where

Gm =
m−1∑
�=0

g� − e�, (26)

in such a way that

em +
m∑

�=1

a�em−� = ām (27)

is a rational number. As the interval has a finite width, this can always be done. From the
upper bound on em−1, it can be seen that Gm � 0; as a result, each em is non-negative. Also,
from the lower bound on em−1, it can be seen that Gm � gm−1, from which we deduce that
em � gm + gm−1. As a result, the series e(s) = ∑∞

m=0 emsm has infinite radius of convergence.
Finally, note that

m−1∑
�=0

g� �
m∑

�=0

e� �
m∑

�=0

g�, (28)

and therefore e(1) converges to eλ. In conclusion, ā(s) = e(s)a(s) is convergent at s = R,
has non-negative rational coefficients and ā(1) = eλa(1) is rational. �

4. Super-trumping relation

We start with the proof of theorem 2, which gives the necessary and sufficient conditions for
the super-trumping relation x ≺w

T y for the case
∑

xi >
∑

yi . First, we prove that conditions
(T1) are necessary.

Suppose x and y are vectors satisfying the conditions of theorem 2, such that x ≺w
T y.

In that case, there is a catalyst c with positive elements such that x ⊗ c ≺w y ⊗ c and
therefore

�(t) = Hy⊗c(t) − Hx⊗c(t) (29)

is non-negative for all t � 0. Note that for t > cmax max
(
x

↑
n , y

↑
n

)
, the function �(t) has the

constant value
(∑

xi − ∑
yi

) ∑
c�. For that reason, the integral

Iν =
∫ ∞

0
�(t)tν−2 dt (30)
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is convergent at t = ∞ for all values of ν < 1. For the convergence of the integral at t = 0,
two cases must be distinguished. (i) If y has no zero elements, then �(t) = 0 for a sufficiently
small t and the integral is convergent at t = 0 for any ν. (ii) If y has zero entries, then �(t) ∝ t

near t = 0 and therefore the integral is convergent only for 0 < ν < 1, but this is sufficient for
us as (T1) is automatically satisfied for all ν � 0 in that special case. Finally, strict positivity
of �(t) in some interval implies that Iν is strictly positive. Since the integral is

Iν =




1

ν(1 − ν)

(
n∑

i=1

xν
i − yν

i

) ∑
�

cν
� ν �= 0

(
ln

∏
xi

/ ∏
yi

) (∑
�

1

)
ν = 0

(31)

investigating ν < 0, ν = 0 and ν > 0 cases separately, it can be seen that (T1) are satisfied.
The proof of sufficiency of the inequalities (T1) for the super-trumping relation will be

completed in three steps, where in each step a special case is investigated. The last two steps
will rely on the proof completed in the previous steps. The first case deals with a very special
situation where both vectors can be expressed as integer powers of a common number.

Case A. y has strictly positive elements such that yi = Kωαi and xi = Kωβi for some integers
αi and βi and for some numbers K > 0 and ω > 1, respectively.

Proof. Without loss of generality, it is assumed that x and y have no common elements and
they are arranged in a non-decreasing order, i.e. x = x↑ and y = y↑. Redefine K such that
α1 = 0 (as a result, αi � 0 for all i) and then set K = 1 by dividing each vector by a common
number. Note that the ν → −∞ limit of (T1) gives x1 � y1. As x and y have no common
elements, we have βi > 0 for all i. Let the polynomial �(s) be defined as

�(s) =
n∑

i=1

(sαi − sβi ) =
∑

k

�ks
k, (32)

and let γ (s) = �(s)/(1 − s). Since �(1) = 0, γ (s) is also a polynomial. We will first
show that γ is strictly positive for s ∈ [0, ω]. The inequality (T1) at ν = 0 implies that
γ (1) = ∑n

i=1(βi − αi) is strictly positive. Next, let s = ων where ν is any value in (−∞, 1]
excluding ν = 0. In that case, we have

γ (s) = 1

1 − ων

n∑
i=1

(
yν

i − xν
i

)
. (33)

Investigating the cases ν < 0 and ν > 0 separately, one finds that γ (s) > 0. Finally,
γ (0) = �(0) > 0.

By lemma 2 of the previous section, there exists two (possibly infinite) series a(s) and
b(s) which are convergent at s = ω and have non-negative series coefficients. Moreover, a(s)

can be chosen in such a way that all of its coefficients and a(1) are rational numbers. As
γ (0) > 0, a0 and b0 can be chosen non-zero. The relationship a(s)�(s) = (1− s)b(s) implies
that

∑m
k=0 ak�m−k = bm − bm−1, where we define b−1 = 0 for simplicity.

Let h̄(t) = ∑∞
m=0 am(t − ωm)+, a function which is a sum of a finite number of terms for

any fixed t. Let

δ̄(t) =
n∑

i=1

yih̄

(
t

yi

)
− xih̄

(
t

xi

)
=

∑
k

�kω
kh̄(tω−k),

=
∞∑

m=0

(bm − bm−1)(t − ωm)+. (34)
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It can be shown that δ̄(t) � 0 for all t � 0, but better lower bounds can be placed as follows
(i) For t � ω, we have δ̄(t) = b0(t − 1)+ � 0. (ii) For t � ω, there is an integer N � 1 such
that ωN � t � ωN+1, and we have

δ̄(t) = bN(t − ωN) + (ω − 1)

N−1∑
m=0

bmωm � (ω − 1)b0, (35)

i.e. a strictly positive lower bound.
The basic idea in here is that the catalyst vector c should be constructed from the powers

of ω such that am is the ‘relative frequency’ of ωm. In that case, h̄(t) is the (unnormalized)
characteristic function of that vector. However, as a(s) is a possibly infinite series, this does
not define a valid catalyst with a finite number of Schmidt coefficients. For that reason, the
series a(s) should be somehow terminated for finding a valid catalyst. The procedure for such
a truncation is detailed below.

Let ε = (ω − 1)b0
/(∑

k |�k|ωk
)
. Since a(ω) < ∞, we can find an integer M (� 1) such

that
∑∞

m=M amωm < ε/2. Define A = ∑∞
m=M am. This is a rational number and satisfies the

inequality AωM < ε/2. Consider the function

h(t) =
M−1∑
m=0

am(t − ωm)+ + A(t − ωM)+. (36)

The following bounds can be placed on |h̄(t) − h(t)|: (i) if t � ωM , we have h(t) = h̄(t);
(ii) if t � ωM , there is an N � M such that ωN � t � ωN+1 and

∣∣h̄(t) − h(t)
∣∣ =

∣∣∣∣∣AωM −
N∑

m=M

amωm −
∞∑

m=N+1

amt

∣∣∣∣∣
� AωM +

∞∑
m=M

amωm < ε. (37)

As a result, the following function

δ(t) =
n∑

i=1

yih

(
t

yi

)
− xih

(
t

xi

)
=

∑
k

�kω
kh(tω−k),

= δ̄(t) +
∑

k

�kω
k(h(tω−k) − h̄(tω−k)) (38)

is non-negative everywhere since (i) for t � ω we have δ(t) = δ̄(t) � 0 and (ii) for t � ω we
have δ(t) > δ̄(t) − ∑

k |�k|ωkε = δ̄(t) − (ω − 1)b0 � 0.
LetN be a sufficiently large integer so that all ofNa0,Na1, . . . ,NaM−1,NA are integers.

Schmidt coefficients of the catalyst vector c will be chosen as ωm, repeated Nam times (for
0 � m � M − 1), and as ωM , repeated NA times. Then Hc(t) = Nh(t) is the characteristic
function of c and the non-negativity of δ(t) is equivalent to x ⊗ c ≺w y ⊗ c. This proves our
assertion that x ≺w

T y. �

Case B. y has strictly positive elements.

Proof. Without loss of generality assume that x and y have no common elements, in which
case the inequalities (T1) imply that x

↑
1 > y

↑
1 . Let, θ = minν∈[−∞,1] Aν(x)/Aν(y). Since the

end points are included, the minimum exists and therefore θ > 1. Let ω = θ1/3 and define
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two n-element vectors x̄ and ȳ as ȳi = ωαi and x̄i = ωβi , respectively, where

αi =
]

ln yi

ln ω

[
, βi =

[
ln xi

ln ω

]
, (39)

[t] is the largest integer smaller than t and ]t[ is the smallest integer greater than t. Using
]t[ − 1 < t � ]t[ and [t] � t < [t] + 1, we get

ȳi

ω
< yi � ȳi , x̄i � xi < ωx̄i . (40)

Then for any ν ∈ [−∞, 1], we have

Aν(x̄)

Aν(ȳ)
>

1

ω2

Aν(x)

Aν(y)
� ω > 1. (41)

As a result, x̄ and ȳ fulfills the conditions of case A, and therefore x̄ ≺w
T ȳ. Finally, the

inequalities (40) imply x ≺w x̄ and ȳ ≺w y. All of these prove our assertion that x ≺w
T y.

�

Case C. y has zero elements.
The proof will be carried out by replacing all zero elements of y with a small value ε

in such a way that this case is reduced to case B. Suppose that y = y↑ and it has exactly m
entries equal to 0 (0 < m < n), i.e. y1 = · · · = ym = 0 < ym+1 � · · · � yn. Note that
the inequalities (T1) are automatically satisfied for ν � 0. Using the premise that (T1) are
satisfied for ν ∈ (0, 1], we can deduce that the function

Jν =
(∑n

i=1 xν
i − ∑n

i=m+1 yν
i

m

) 1
ν

(42)

is strictly positive for all ν ∈ (0, 1]. Moreover, it has a positive limit J0 =(∏
x
/ ∏n

i=m+1 yi

)1/m
at the end point ν = 0. As a result, Jmin = minν∈[0,1] Jν exists and

is non-zero as the minimum is taken over a compact interval. Let ε be a positive number such
that

ε < min

(
Jmin, yn

(
x1

yn

) n
m

)
, (43)

and define a new vector ȳ as ȳ1 = · · · = ȳm = ε and ȳi = yi for all i > m. It is obvious that
ȳ ≺w y. Showing that x ≺w

T ȳ will complete the proof. For this purpose, we look at the power
means. (i) For ν ∈ (0, 1], it is trivial to check that Jν > ε is equivalent to Aν(x) > Aν(ȳ).
(ii) For ν = 0, we have

A0(x)

A0(ȳ)
=

(∏n
i=1 xi

) 1
n(

εm
∏n

i=m+1 yi

) 1
n

� x1

yn

(yn

ε

) m
n

> 1. (44)

(iii) For ν < 0, we use Bernoulli’s inequality, which states that αr −1 � r(α −1) for all r � 1
and α > 0, as follows:

m
(
εν − yν

n

)
> myν

n

((
x1

yn

)ν n
m

− 1

)
(45)

� myν
n

n

m

((
x1

yn

)ν

− 1

)
(46)

= n
(
xν

1 − yν
n

)
, (47)
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which implies that

n∑
i=1

ȳν
i = mεν +

n∑
i=m+1

yν
i � mεν + (n − m)yν

n (48)

> nxν
1 �

n∑
i=1

xν
i . (49)

The result Aν(x) > Aν(ȳ) follows from here. As power mean inequalities are satisfied for all
ν ∈ (−∞, 1], we have x ≺w

T ȳ by the result in case B, which completes the proof. �

5. Sub-trumping relation

This section contains a proof of theorem 3, which gives the necessary and sufficient conditions
for the sub-trumping relation. The proof is quite similar but simpler than the proof of
theorem 2, as zero entries do not create any difficulty in here.

Proof of necessity. Let x and y be vectors satisfying the conditions of theorem 3 such that
x ≺wT y. It will be shown that the strict inequalities (T2) are satisfied. Since there is a catalyst
c with positive entries such that x ⊗ c ≺w y ⊗ c, the function

�′(t) = H ′
y⊗c(t) − H ′

x⊗c(t) (50)

is non-negative. Moreover, �′(t) = 0 for all t � y
↓
1 . At t = 0, it has the strictly positive limit

�′(0) = (∑
yi − ∑

xi

)∑
c�. For that reason, the integral

Iν =
∫ ∞

0
�′(t)tν−2 dt (51)

is convergent for all ν > 1 and is strictly positive. Since the integral is

Iν = 1

ν(ν − 1)

(
n∑

i=1

yν
i − xν

i

) ∑
�

cν
� , (52)

all inequalities in (T2) follow. �

Proof of sufficiency. This will be done in two steps, the first one dealing with the special
situation where the non-zero elements of both vectors can be expressed as integer powers of a
common number.

Case A. All non-zero entries of x and y are such that yi = Kωαi and xi = Kωβi for some
integers αi and βi and for some numbers K > 0 and ω < 1 respectively.

Proof. Either vector might have a zero element, but this will not cause any difficulty. Without
loss of generality, it is assumed that x and y have no common elements and they are arranged
in a non-increasing order, i.e. x = x↓ and y = y↓. Redefine K such that α1 = 0 (as a result,
αi � 0 for all i) and then set K = 1 by dividing each vector by a common number. Note that
the ν → +∞ limit of (T1) gives x1 < y1, and therefore we have βi > 0 for all i. Let the
polynomial �(s) be defined as

�(s) =
∑

i

′
sαi −

∑
i

′
sβi =

∑
k

�ks
k, (53)

where the primes denote that the sum over i should be done only for non-zero entries. Note
that �(0) > 0 and all inequalities in (T2) are equivalent to �(s) > 0 for s ∈ (0, ω].
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By lemma 2 (b) of section 3, we can find two power series a(s) and b(s) with non-negative
coefficients such that a(s)�(s) = b(s), both series are convergent at s = ω, both have non-zero
constant terms and a(s) has rational coefficients. Using the coefficients of a(s), the following
function is defined:

h̄′(t) =
∞∑

m=0

am(ωm − t)+. (54)

Note that, for any finite t, the expression above consists of a sum of a finite number of positive
terms. Let

δ̄′(t) =
∑

i

′
yih̄

′
(

t

yi

)
−

′∑
i

xi h̄
′
(

t

xi

)
, (55)

=
∑

k

�kω
kh̄′(tω−k), (56)

=
∞∑

m=0

bm(ωm − t)+. (57)

It is obvious that δ̄′(t) is non-negative everywhere. For our purposes, it is better to use the
strictly positive lower bound δ̄′(t) � b0(1 − ω) for t � ω.

To obtain a valid catalyst, the series a(s) can be truncated as follows. Let ε = b0(1−ω)
/(∑

k |�k|ωk
)
. Since a(ω) < ∞, we can find an integer M(�1) such that

∑∞
m=M amωm < ε.

Consider the function

h′(t) =
M−1∑
m=0

am(ωm − t)+. (58)

It is obvious that h′(t) � h̄′(t). For t � ωM , these functions are equal. For any t � ωM , we
can find an integer N(�M) such that ωN+1 < t � ωN , for which case we have

h̄′(t) − h′(t) =
N∑

m=M

am(ωm − t) (59)

<

N∑
m=M

amωm � ε. (60)

In other words, these two functions do not deviate much from each other.
Finally, consider the following function:

δ′(t) =
∑

i

′
yih

′
(

t

yi

)
−

∑
i

′
xih

′
(

t

xi

)
,

=
∑

k

�kω
kh′(tω−k), (61)

= δ̄′(t) −
∑

k

�kω
k(h̄′(tω−k) − h′(tω−k)). (62)

This function is non-negative everywhere since (i) for t � ω we have δ′(t) = δ̄′(t) � 0 and
(ii) for t � ω we have δ′(t) � δ̄′(t) − ε

∑
k |�k|ωk � 0.
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Let N be a sufficiently large integer so that all of Na0,Na1, . . . ,NaM−1 are integers.
Schmidt coefficients of the catalyst vector c will be chosen as ωm, repeated Nam times. Then
H ′

c(t) = Nh′(t) and the non-negativity of δ′(t) is equivalent to x ⊗ c ≺w y ⊗ c. This proves
our assertion that x ≺wT y. �

Case B. The general case.

Proof. Without loss of generality assume that x and y have no common elements, in which
case the inequalities (T2) imply that x

↓
1 < y

↓
1 . Let θ = maxν∈[1,+∞] Aν(x)/Aν(y). Since the

end points are included, the minimum exists and therefore θ < 1. Let ω = θ1/3 and define the
following integers for all non-zero entries of x and y:

αi =
]

ln yi

ln ω

[
, βi =

[
ln xi

ln ω

]
. (63)

Two n-element vectors x̄ and ȳ will be defined as ȳi = ωαi and x̄i = ωβi , respectively. If a
particular element of original vectors is zero, say yi , then the corresponding element ȳi will
be chosen as zero. A similar choice will be made for x and x̄. In that case, the following
inequalities hold for each element:

ωyi � ȳi � yi, xi � x̄i � 1

ω
xi. (64)

From these inequalities, it can be shown that Aν(x̄) � ωAν(ȳ) < Aν(ȳ) for all ν ∈ [1, +∞]
and the proof given in case A enables us to conclude that x̄ ≺wT ȳ. Finally, the inequalities
above imply that x ≺w x̄ and ȳ ≺w y which prove the assertion that x ≺wT y. �

6. Trumping relation

This section contains the proof of theorem 1, which gives all necessary and sufficient conditions
for the trumping relation. The main difficulty in this case is the requirement that the two vectors
that are to be related need to have the same sum. As a result, in order to surmount this particular
difficulty, details of the proofs given in this section become more complicated.

Proof of the necessity of conditions (T1)–(T3) for the trumping relation is trivial. Given
that there is a catalyst c so that we have x ⊗ c ≺ y ⊗ c, the strict inequality of (17) can be
used for the following strictly convex functions: f (t) = tν for ν > 1 and ν < 0, f (t) = −tν

for 0 < ν < 1, f (t) = − ln t and f (t) = t ln t . All inequalities (T1)–(T3) follow from these.
The proof of sufficiency will follow along the same lines as the proof of the super-trumping

relation given in section 4, where three special cases will be considered separately.

Case A. y has strictly positive elements such that yi = Kωαi and xi = Kωβi for some integers
αi and βi and for some numbers K > 0 and ω > 1 respectively.

Proof. Without loss of generality, it is assumed that x and y have no common elements and
they are arranged in a non-decreasing order. The smallest of the exponents is α1 which can
be set equal to 0 by a redefinition of K. Finally, both x and y can be divided by K which
is equivalent to setting K = 1. As a result, in here, it is not required that the vectors are
normalized (i.e. they do not add up to 1). Since α1 = 0, all other exponents satisfy αi � 0 and
βi > 0.

Let the polynomial �(s) be defined as

�(s) =
n∑

i=1

(sαi − sβi ) =
∑

k

�ks
k. (65)
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First, note that �(s) has simple roots at s = 1 and s = ω. This can be simply seen by
evaluating its derivative at these points,

�′(1) =
n∑

i=1

(αi − βi) < 0, (66)

�′(ω) = σ(x) − σ(y)

ln ω
> 0, (67)

where the former strict inequality follows from (T1) at ν = 0 and the latter follows from (T3).
The fact that x and y are not normalized does not invalidate the latter inequality.

Therefore, γ (s) = �(s)/((1 − s)(1 − s/ω)) is a polynomial. It can be seen that
γ (0) = �(0) > 0. Moreover, we will show that γ (s) has no positive root. For this purpose,
let s = ων where ν is any real number (ν = 0 and ν = 1 can be excluded if desired). Then

γ (ων) = 1

(1 − ων)(1 − ων−1)

n∑
i=1

(
yν

i − xν
i

)
, (68)

which can be seen to be strictly positive by virtue of (T1) and (T2) for all values of ν. (For
ν = 0 and ν = 1, we have seen above that γ (s) has no root at 1 and ω).

By lemma 1 of section 3, there are two polynomials a(s) and b(s) with non-negative
coefficients such that a(s)γ (s) = b(s) and a(s) has integral coefficients. The constant
coefficients a(0) and b(0) will also be chosen to be non-zero. In terms of �, the relation can
be expressed as

a(s)�(s) = (1 − s)(1 − s/ω)b(s). (69)

Let a(s) has degree N. The catalyst vector c will be chosen from the numbers ωk which
are repeated ak times (k = 0, 1, . . . , N). In that case, the characteristic function of c is

Hc(t) =
N∑

k=0

ak(t − ωk)+. (70)

We would like to show that the function

�(t) = Hy⊗c(t) − Hx⊗c(t) (71)

=
n∑

i=1

yiHc(t/yi) − xiHc(t/xi) (72)

=
∑

�

��ω
�Hc(tω

−�) (73)

=
∑
k,�

ak��(t − ωk+�)+ (74)

is non-negative for all t � 0. First, note that

�(t) =
M+1∑
m=0

(fm − fm−1)(t − ωm)+, (75)

where f (s) = (1 − s/ω)b(s), fm are the coefficients of the polynomial f (s) and we have
chosen f−1 = 0 for simplicity. Here, M is the degree of f (M + 1 is the degree of a(s)�(s)).
Since �(t) is a piecewise linear function, for showing its positivity, it is sufficient to look at



Catalytic transformations for bipartite pure states 12201

its value at the turning points and at the t = 0 and t = ∞ limits. First, note that �(t) = 0 for
t � 1 and �(t) is constant for t � ωM+1. As a result, we only need to check the values of
�(t) at t = ω,ω2, . . . , ωM+1. For any 1 � k � M + 1,

�(ωk) =
k−1∑
m=0

(fm − fm−1)(ω
k − ωm) (76)

= (ω − 1)

k−1∑
m=0

(fm − fm−1)

k−1∑
p=m

ωp (77)

= (ω − 1)

k−1∑
p=0

ωp

p∑
m=0

(fm − fm−1) (78)

= (ω − 1)

k−1∑
p=0

fpωp. (79)

Finally, as f (s) = (1 − s/ω)b(s), the coefficients of these polynomials satisfy

fp = bp − bp−1

ω
, (80)

where b−1 = 0, which leads to

�(ωk) = (ω − 1)bk−1ω
k−1 � 0. (81)

This completes the proof of �(t) � 0 for all t � 0. It also shows that x ⊗ c ≺ y ⊗ c.
Therefore, x ≺T y. �

Before passing on to the next case, it is necessary to state another theorem that shows
the stability of the inequalities (T1)–(T3) against small variations in x and y when these have
different minimum and maximum entries. Although it is possible to generalize to vectors
which have zero entries, the stability will be shown only for vectors having non-zero elements.
For this purpose, it will also be appropriate to measure the distance between two vectors by
the deviation of the ratio of the corresponding elements from 1. For two vectors x and x̄ which
has no zero elements, the distance between them is defined as

D(x; x̄) = max
i

∣∣∣∣ln xi

x̄i

∣∣∣∣ . (82)

The following theorem expresses the stability of conditions (T1)–(T3).

Theorem 4. Let x and y be n-element vectors formed from positive numbers such that x↑
1 > y

↑
1

and x
↑
n < y

↑
n . If x and y satisfy the inequalities (T1)–(T3), then there is a positive number ε

such that whenever D(x; x̄) � ε and D(y; ȳ) � ε, and
∑

x̄i = ∑
ȳi = ∑

xi , the vectors x̄

and ȳ satisfy the same strict inequalities.

The proof of theorem 4 is postponed to the appendix. This result will be used in the proof
of the next case.

Case B. y has strictly positive elements.
Before proceeding with the proof, it will first be argued that giving the proof for the

special case where y has a single maximum element is sufficient. For this purpose, consider
the case where y has more than one maximum element. Let y = y↑ and suppose that the last
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k + 1 entries of y are equal (k � 1), i.e. yn−k−1 < yn−k = · · · = yn. The inequalities (T1) and
(T2) imply that k < n − 1, i.e. y is not a uniform vector. Consider yε , a vector which is also a
function of a parameter ε, which is defined as follows:

yε
i =




yi i < n − k − 1
yn−k+1 + kε i = n − k − 1
yn − ε n − k � i � n − 1
yn i = n.

(83)

It can be seen that for all 0 < ε � (yn − yn−k−1)/(k + 1), we have yε ≺ y and yε has a single
maximum entry. Moreover, yε converges to y as ε goes to zero. Theorem 4 then ensures that
there is a sufficiently small non-zero ε such that x and yε satisfy all inequalities (T1)–(T3).
As a result, proving that x ≺T yε will also show that x ≺T y.

As a result, it can be assumed without loss of generality that y has a single maximum
entry. It will also be assumed that x and y are normalized

(∑
xi = ∑

yi = 1
)

and they
are arranged in a non-decreasing order (x = x↑, y = y↑). The proof will be carried out by
choosing two new vectors x̄ and ȳ which are sufficiently near to x and y respectively such
that theorem 4 can be invoked, and it will be made sure that x̄ and ȳ satisfy the conditions
considered in case A. Let H = σ(x)−σ(y) > 0 be the entropy difference of these vectors and
let L = ∣∣ln y

↑
1

∣∣. Note that the logarithm of all elements are bounded by L, i.e. |ln yi | � L and
|ln xi | � L. Let ε0 be a positive number such that whenever D(x, x̄) � ε0 and D(y, ȳ) � ε0,
the vectors x̄ and ȳ satisfy all the inequalities in (T1)–(T3). A positive number ε is chosen
such that

ε < min

(
ε0

2
,

1

8n
,

1

n2
,

H

96nL
,

1

2
ln

(
yn

yn−1

))
. (84)

It necessarily follows that ε < L, an inequality that will be used below.
We will define αi and βi to be some rational approximations to numbers ln yi and ln xi ,

respectively. Let φi and θi represent the deviation of these rational approximations from the
true values,

αi = ln yi + φi, (85)

βi = ln xi + θi . (86)

As the rational numbers are dense, these deviations can be chosen essentially arbitrarily. But,
for our purposes, they are going to be chosen as

ε

2n
� φi � ε

n
for 1 � i � n − 1, (87)∣∣∣∣∣

n∑
i=1

yiφi

∣∣∣∣∣ � ε2. (88)

In other words, the rational approximations αi for all elements except the last one are to be
chosen such that the corresponding deviations φi are positive and small, but they are also
required to be sufficiently far away from zero. The last element is an exception. In that case,
αn has to be chosen as a rational number so that this time the sum in (88) is made very small.
In that case, φn does not need to be positive. Note that conditions (87) and (88) provide n
separate intervals to choose αi from. As rational numbers are dense, all of αi can be chosen
as rational numbers. Similarly, we define βi and the corresponding deviations θi such that

− ε

n
� θi � − ε

2n
for 1 � i � n − 1, (89)
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n∑

i=1

xiθi

∣∣∣∣∣ � ε2, (90)

where the deviations for the first n − 1 elements are chosen this time to be negative. Similar
comments apply in here.

Below, however, we will need a uniform bound on all of the deviations. For this purpose,
note the following bound on φn:

yn|φn| � ε2 +
n−1∑
i=1

yi |φi | � ε2 + (1 − yn)
ε

n
(91)

|φn| � ε2

yn

+

(
1

yn

− 1

)
ε

n
(92)

� nε2 + (n − 1)
ε

n
� ε, (93)

where we have used the fact that yn � 1/n for the maximum element of y. Therefore, the
following uniform bounds can be placed on all deviations:

|φi | � ε, |θi | � ε for i = 1, 2, . . . , n, (94)

where the bounds on θi follow by a similar analysis. For most of the following, we will use
these uniform bounds. The stricter bounds given in (87) and (89) will only be necessary at
the very end. The following bounds on the rational approximations will be occasionally used:
|αi | � |ln yi | + |φi | � L + ε � 2L and similarly |βi | � 2L.

Consider the following function:

F(λ) =
n∑

i=1

(eλαi − eλβi ). (95)

Our first job is to establish that this function has a root near 1, i.e. there is a number λ0, which
is very close to 1 such that F(λ0) = 0. Once this problem is solved, the two new vectors x̄

and ȳ can be defined as

x̄i = eλ0βi

Z0
, (96)

ȳi = eλ0αi

Z0
, (97)

where Z0 = ∑n
i=1 eλ0αi = ∑n

i=1 eλ0βi . In that case, both x̄ and ȳ are normalized vectors.
However, in order to reach to the final conclusion, we also need to place bounds on the
deviation of both λ0 and Z0 from 1. Therefore, the following analysis of bounds is needed.

First, we must show that F(λ) has a root somewhere near 1. For this purpose, we look at
the value of F(1). By using the following inequalities satisfied by the exponential function,
1 + t � et � 1 + t + t2 for all |t | � 1, the following bounds can be placed on the first term
of F(1):

n∑
i=1

eαi =
n∑

i=1

yi eφi (98)

�
n∑

i=1

yi(1 + φi) � 1 − ε2, (99)
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n∑
i=1

eαi �
n∑

i=1

yi

(
1 + φi + φ2

i

)
� 1 + 2ε2. (100)

The same bounds can also be placed for the second term as well, which lead to

|F(1)| � 3ε2, (101)

a very small quantity, which indicates that a root is very close to 1.
However, to verify that there is a root around 1 and to place a bound on the deviation of

the root from 1, we must make sure that the derivative F ′(λ) does not rapidly go to zero around
λ = 1. For this purpose, a lower bound will be placed on the derivative for |λ − 1| � ε/L.
First, note that

n∑
i=1

αi eλαi = −σ(y) +
n∑

i=1

yiφi (102)

+
n∑

i=1

yiαi(e
(λ−1) ln yi+λφi − 1), (103)

and the argument of the exponential is small as

|(λ − 1) ln yi + λφi | � ε

L
L +

(
1 +

ε

L

)
ε � 3ε. (104)

Now, using |et − 1| � |t | + t2 � 2|t | for all |t | � 1, we can find the following lower bound on
the expression above:

n∑
i=1

αi eλαi � −σ(y) − ε2 − 2L · 6ε (105)

� −σ(y) − 13Lε (106)

A similar analysis for the second term of F ′(λ) gives
n∑

i=1

βi eλβi � −σ(x) + 13Lε. (107)

Both of these give the following lower bound on the derivative F ′(λ) for |λ − 1| � ε/L:

F ′(λ) � H − 26Lε > 1
2H. (108)

By using the lower bound given above, it is possible to see that F(1 + ε/L) is positive
and F(1 − ε/L) is negative. This guarantees the presence of the root in the specified interval.
But, this interval is too large for our purposes, and we need to find a better bound on the place
of the root. Using F(λ0) = 0, we can get

−F(1) =
∫ λ0

1
F ′(λ) dλ, (109)

|F(1)| � |λ0 − 1|H
2

, (110)

|λ0 − 1| � 2|F(1)|
H

� 6ε2

H
. (111)

In other words, the root is very close to the value 1.
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One final bound, this time a bound on ln Z0, will be needed. For this, we first note that

Z0 =
n∑

i=1

eαi e(λ0−1)αi �
(

n∑
i=1

eαi

)
e+2|λ0−1|L, (112)

and a similar analysis for the lower bound gives

|ln Z0| �
∣∣∣∣∣ln

(
n∑

i=1

eαi

)∣∣∣∣∣ + 2|λ0 − 1|L. (113)

Finally, (99) and (100) give∣∣∣∣∣ln
(

n∑
i=1

eαi

)∣∣∣∣∣ � 2ε2, (114)

where we have used the fact that t − 1 � ln t � (t − 1)/t . As a result, we get

|ln Z0| �
(

2 +
12L

H

)
ε2. (115)

Now, it is possible to show that the vectors x̄ and ȳ satisfy all the required properties to
complete the proof. First, we will show that x is majorized by x̄. For this reason, we will look
at the ratio xi/x̄i for i = 1, 2, . . . , n − 1, i.e. for all elements except the last one. Here, we
will make use of the upper bounds given in (89) as

ln
xi

x̄i

= −θi + (1 − λ0)βi + ln Z0 (116)

� ε

2n
−

(
2 +

24L

H

)
ε2 � 0, (117)

where the last inequality can be obtained simply by inspecting (84). In other words, we have
xi � x̄i for all i < n. The conclusion x ≺ x̄ then follows.

Showing that ȳ is majorized by y is a little more involved. First, we note

ln
ȳi

yi

= φi + (λ0 − 1)αi − ln Z0 (118)

� ε

2n
−

(
2 +

24L

H

)
ε2 � 0; (119)

in other words ȳi � yi for all i < n. Next, note that ȳn is the maximum element of ȳ as for
any i < n, we have ȳn/ȳi � e−2εyn/yn−1 > 1. Suppose that ȳ can be put in a non-decreasing
order as ȳi1 � ȳi2 � · · · � ȳin−1 < ȳn. As a result, for any m < n, we have

Fm(ȳ) = ȳi1 + · · · + ȳim � yi1 + · · · + yim � Fm(y), (120)

which shows that ȳ ≺ y.
Finally, we have

D(x; x̄) = max
i

|θi − (1 − λ0)βi − ln Z0| (121)

� ε +

(
2 +

24L

H

)
ε2 < ε0, (122)

and similarly D(y; ȳ) < ε0. Therefore, the inequalities (T1)–(T3) are also satisfied by x̄ and
ȳ. It is easy to see that x̄ and ȳ satisfy the conditions of case A. The number ω is given as
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exp(λ0/N ), where N is the common denominator of the rational numbers αi and βi . As a
result, the conclusion x̄ ≺T ȳ follows. Combined with x ≺ x̄ and ȳ ≺ y, it leads to the desired
result x ≺T y. �

Case C. y has zero components.
Without loss of generality, it is supposed that x and y are normalized, are arranged

in a non-decreasing order and have no common elements. Let y have m zeros, i.e. y1 =
y2 = · · · = ym = 0 < ym+1 � · · · � yn. Let zε be a vector defined as follows:

zε
i = ε for i = 1, 2, . . . , m, (123)

zε
i = (1 − mε)yi for i = m + 1, . . . , n, (124)

where ε is a non-negative parameter. We will only be interested in the values of ε in the range
0 � ε �

(
y−1

m+1 + m
)−1

, where zε is arranged in an increasing order. It is easy to see that
all such vectors are related to each other by the majorization relation, i.e. if εA > εB then
zεA ≺ zεB . As z0 = y, we have zε ≺ y for all values of ε in the range considered.

Our job is to show that if ε is sufficiently small, then x and zε satisfy the inequalities
(T1)–(T3). This is a straightforward but laborious procedure which is detailed below. For this
purpose, different intervals of ν values will be considered separately and for each interval, the
existence of a separate upper bound for ε will be provided.

(a) For ν � 0. The quantity ε1 = yn(x1/yn)
n/m is a possible upper bound for this range. Let

ε < ε1. For the special case ν = 0, we have

A0(x)

A0(zε)
=

( ∏n
i=1 xi

εm(1 − mε)n−m
∏n

i=m+1 yi

) 1
n

(125)

� x1

yn

(yn

ε

) m
n

> 1. (126)

For all negative values of ν, we make use of Bernoulli’s inequality again to reach m
(
εν −yν

n

)
>

n
(
xν

1 − yν
n

)
. This then leads to

n∑
i=1

(
zε
i

)ν = mεν + (1 − mε)ν
n∑

i=m+1

yν
i (127)

> mεν + (n − m)yν
n > nxν

1 �
n∑

i=1

xν
i . (128)

As a result, we conclude that Aν(x) > Aν(z
ε) for all ν � 0 whenever ε < ε1.

(b) For 0 < ν � 1/2. The function

Jν =
(∑n

i=1 xν
i − ∑n

i=m+1 yν
i

m

) 1
ν

(129)

is strictly positive in the interval (0, 1/2] and moreover it has a strictly positive limit at ν = 0.
Therefore, ε2 = minν∈[0,1/2] Jν is a positive number. If ε < ε2, we have

n∑
i=1

xν
i > mεν +

n∑
i=m+1

yν
i >

n∑
i=1

(
zε
i

)ν
, (130)

which leads to Aν(x) > Aν(z
ε) in this interval.



Catalytic transformations for bipartite pure states 12207

(c) For 2 � ν. Let K be defined as

K = max
ν∈[2,∞]

Aν(x)

Aν(y)
, (131)

which is a positive number such that K < 1. Note that, as x and y have no common elements,
the ratio above at ν = +∞ gives x

↑
n /y

↑
n which is smaller than 1. Let ε3 = (1 − K)/m. Then,

for any ε < ε3 and for all ν � 2 we have

n∑
i=1

(
zε
i

)ν
> (1 − mε)ν

n∑
i=m+1

yν
i (132)

> Kν

n∑
i=m+1

yν
i >

n∑
i=1

xν
i . (133)

This shows the desired inequality, Aν(z
ε) > Aν(x).

(d) For 1/2 � ν � 2. Let

�Rν = 1

ν − 1
ln

Aν(y)

Aν(x)
. (134)

The inequalities (T1)–(T3) imply that �Rν is a strictly positive continuous function in the
interval considered. Therefore, the minimum M = minν∈[1/2,2] �Rν is a positive number. Let

�Rν(ε) = 1

ν − 1
ln

Aν(z
ε)

Aν(x)
. (135)

Since all vectors zε are related to each other by the majorization relation, for any εA > εB

we have �Rν(εA) � �Rν(εB) for all ν. In other words, as ε decreases, the function �Rν(ε)

monotonically increases. Finally, we note that �Rν(ε) converges pointwise to �Rν as ε goes
to zero. At this point, we invoke Dini’s theorem, which states that a sequence of monotonically
increasing, continuous and pointwise convergent functions on a compact space are uniformly
convergent. Therefore, there is a positive number ε4 such that whenever ε < ε4, we have
�Rν(ε) > M/2.

For such values of ε, the inequalities (T1) and (T2) are satisfied for all ν ∈ [1/2, 2].
Moreover, the inequality (T3) is also satisfied, as �R1(ε) = σ(x) − σ(zε) > M/2 > 0.

As a result, if ε < min(ε1, ε2, ε3, ε4), then the vectors x and zε satisfies all the inequalities
(T1)–(T3). The proof of case B enables us to conclude that x ≺T zε . Finally, by zε ≺ y we
reach to the desired result x ≺T y. �

7. Discussion

In this section, some immediate implications of the proven theorems on the catalytic
transformations of entangled states are discussed. For simplicity, the entangled states, such
as (2)–(3), will be represented only by their respective Schmidt coefficients. For this reason,
the vectors x and y that appear in this section are normalized vectors of non-negative numbers(∑

xi = ∑
yi = 1

)
. We first start with probabilistic transformations.

7.1. Probabilistic conversion

The least upper bound on the conversion probabilities P(x ⊗ c → y ⊗ c) can be computed
using (6) and the conditions given in theorem 2 as

Pcat(x → y) = min
ν∈[−∞,1]

Aν(x)

Aν(y)
, (136)
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where the minimum is used by the inclusion of the end points. Although the minimization is
over a continuous variable, it is possible to compute Pcat(x → y) to any desired accuracy.

For any probability p with p < Pcat(x → y), it is possible to find a catalyst such that the
state x can be converted into y with a success probability p. The case p = Pcat(x → y), i.e. the
attainability of the upper bound has to be investigated separately by using theorems 1 and 2. If
there is a ν in the interval (−∞, 1) which gives the minimum of (136), then Pcat(x → y) cannot
be achieved by any catalyst c. This is always the case when Pcat(x → y) < min

(
1, x

↑
1 /y

↑
1

)
.

On the other hand, if the minimum of (136) occurs only at the end point ν = −∞, in
which case we have Pcat(x → y) = x

↑
1

/
y

↑
1 < 1, then there is a catalyst that achieves that

maximum probability. It is possible to find non-trivial examples of this case, where catalysis
improves the conversion probability, i.e. Pcat(x → y) > P (x → y).

Finally, if Pcat(x → y) = 1, then the upper bound can be reached by a catalyst if and only
if x ≺T y. An interesting situation occurs if this is not the case, i.e. when x ⊀T y. For such
pairs of states, it is possible to find catalysts that achieve any conversion probability p with
p < 1, but there will always be a possibility of failure, in which case, the catalyst may also
be destroyed. If the trumping relation is violated because of an inversion of some inequality
in (T2), i.e. if there is a ν > 1 such that Aν(x) > Aν(y), then the reason for such a behavior
can be understood by using entanglement monotones [15]. Let ‖x‖ν = n1/νAν(x) be the �ν

norm of the vector x. Then −‖x‖ν is an entanglement monotone. This monotone increases in
the transformation of x ⊗ c into y ⊗ c for any catalyst c, and therefore there should always be
a failure which significantly decreases the monotone. This monotone can also be used to find
minimal resources that the catalyst c should have if it achieves a probability p as follows:

‖c‖ν � 1 − p

‖x‖ν − p‖y‖ν

. (137)

As each component of c has to be smaller than the bound given, the number of components of
c diverges inversely proportional to 1 − p as the probability value approaches to 1, i.e. larger
and larger resources are needed to get closer to the upper bound.

7.2. Closure of T (y)

It is also of some interest to investigate the vectors in the closure of

T (y) = {x : x ≺T y}, (138)

which is the set of vectors trumped by y. Using theorem 1, it is possible to prove a conjecture
which is attributed to Nielsen: x ∈ T (y) if and only if conditions (T1)–(T2) are satisfied with
non-strict inequalities, i.e. Aν(x) � Aν(y) for ν < 1 and Aν(x) � Aν(y) for ν > 1 (the third,
σ(x) � σ(y), follows from these). In fact, if these conditions are satisfied (excluding the
trivial cases of maximally entangled and non-entangled states), it is possible to find different
vectors x̄ very near to x such that x̄ ≺ x and ȳ very near to y such that y ≺ ȳ. Strict inequalities
(T1)–(T3) for the pair (x̄, x) then show that the pair (x̄, y) satisfies the same inequalities which
lead to x̄ ≺T y. This shows that any neighborhood of x contains a vector trumped by y. The
same argument can also be used to show that x ≺T ȳ, i.e. any neighborhood of y contains a
vector which trumps x.

If x ∈ T (y) but x ⊀T y, it means that no catalyst can achieve the conversion of x into
y with probability 1, but it is possible to find a sequence of catalysts (with growingly large
Schmidt numbers) such that the conversion probability is made to approach 1. However, this
case has a significantly different aspect than the other pairs of states which have Pcat = 1.
Namely, it is possible to find states ȳ very near to y such that x to ȳ conversion is possible
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with certainty. In other words, high fidelity conversion is possible without running the risk of
losing the catalyst.

7.3. Catalytic conversion ratio

Let x and y be the Schmidt coefficients of some given states. What is the best ratio for M/N

if N copies of x is needed to be transformed into M copies of y? The asymptotic procedure
of Bennett et al achieves the ratio Casymp = σ(x)/σ (y), but this procedure is associated with
a small probability of failure and a loss in fidelity. It is of some interest to find the best ratio
when there is no possibility of failure and the exact final state y is needed to be produced (with
fidelity 1). A simple answer can now be found when catalysis is allowed. To simplify the
discussion, it is assumed that nN

x > nM
y , where nx and ny are Schmidt numbers of the states x

and y respectively. In that case, it is only necessary to check (T1)–(T3) for positive ν values.
In conclusion, if

M

N
< Ccat = min

ν∈[0,∞]

σν(x)

σν(y)
, (139)

where σν are the Renyi entropies, then x⊗N ≺T y⊗M and it is possible to convert N copies of
x into M copies of y with certainty by using a suitable catalyst. When failure is acceptable, a
different conversion ratio can be found. If

M

N
< Ccat,prob = min

ν∈[0,1]

σν(x)

σν(y)
(140)

is satisfied, then conversion by a suitable catalyst is possible where the success probability
can be made sufficiently close to 1. However, failure for such a procedure implies the loss
of entanglement not only of x, but also of the catalyst as well. In both of these cases, the
numbers of copies N and M do not need to be large, in contrast to the asymptotic procedure.
As, Ccat � Ccat,prob � Casymp, a better conversion ratio of the asymptotic transformation might
make it more advantageous than the probabilistic catalysis, but a detailed investigation of
losses incurred in the event of failure is needed before reaching to a definite conclusion.

There are two special cases of particular interest, i.e. when either the initial or the final
state is maximally entangled. By using the fact that the Renyi entropy σν is a non-increasing
function of ν, it is possible to compute the catalytic conversion ratio explicitly for both of these
cases. When x is maximally entangled and y is partially entangled, then catalysis does not
have any advantage in the transformation process. The conversion is possible as long as the
Schmidt number does not increase. The expressions above also give the same result, namely
Ccat = Ccat,prob = ln nx/ ln ny .

For the other case, when it is desired to concentrate the partially entangled state x to
maximally entangled y, we have

Ccat = σ∞(x)

ln ny

= (− ln xmax)

ln ny

, (141)

for the deterministic case, where xmax is the largest component of x. If failure is allowed, then
the conversion ratio matches with the asymptotic one, Ccat,prob = Casymp.

8. Conclusions

The necessary and sufficient conditions for the trumping relation and two associated relations
have been found. These conditions will be valuable in the investigations of catalytic
transformations. Once it is understood that catalysis is possible, the problem of finding a
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suitable catalyst can in principle be solved by going backwards along the proofs. Although
possible solutions of the problem posed in lemma 1 in section 3 can be found by the well-
established procedures of linear programming, carrying out the whole procedure for realistic
cases might be forbidding, as the degree of the polynomial γ (s) and of the sought for
polynomial a(s) might be very large. However, the method used in the proof of the lemma
can be used to place an upper bound on the degree of a(s) (but not on the Schmidt number).
This also suggests a conjecture that the complex roots, ν, of the equation Aν(x) = Aν(y), and
their closeness to the real line could be used for estimating the minimum amount of resources
the catalysts should have.

Appendix. Proof of theorem 4

The most troublesome part of the proof of theorem 4 is the neighborhood of ν = 1. This part
can be handled with the following theorem.

Theorem 5. For any positive vector x and any given δ > 0, there is a positive number ε such
that for any x̄ with

∑
i x̄i = ∑

xi , and D(x; x̄) � ε, we have

e−δ|ν−1| � Aν(x̄)

Aν(x)
� eδ|ν−1| ∀ν ∈ [1/2, 2] . (A.1)

Proof of theorem 5. Without loss of generality, it is supposed that x = x↑. Let Sν(x) = ∑
i x

ν
i

be the νth power sum and Kν be defined as

Kν = ln
Sν(x̄)

Sν(x)
. (A.2)

Note that K1 = 0. We place the following bound on the absolute value of ν derivative of Kν :

∣∣∣∣dKν

dν

∣∣∣∣ = 1

Sν(x)Sν(x̄)

∣∣∣∣∣∣
∑
ij

x̄ν
i xν

j ln
x̄i

xj

∣∣∣∣∣∣ (A.3)

� ε +
1

Sν(x)Sν(x̄)

∣∣∣∣∣∣
∑
ij

x̄ν
i xν

j ln
xi

xj

∣∣∣∣∣∣
� ε +

1

Sν(x)Sν(x̄)

∣∣∣∣∣∣
∑
i>j

(
x̄ν

i xν
j − x̄ν

j xν
i

)
ln

xi

xj

∣∣∣∣∣∣ (A.4)

Since for i > j we have xi � xj , all of the logarithmic terms are non-negative in the expression
above. As a result, for any positive ν we have∣∣∣∣dKν

dν

∣∣∣∣ � ε +
eνε − e−νε

Sν(x)Sν(x̄)

∑
i>j

xν
i xν

j ln
xi

xj

(A.5)

� ε +
eνε − e−νε

2Sν(x)Sν(x̄)

∑
i,j

xν
i xν

j

∣∣∣∣ln xi

xj

∣∣∣∣ (A.6)

� ε +
eνε − e−νε

2

Sν(x)

Sν(x̄)
ln

xn

x1
. (A.7)
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Finally, we can apply Sν(x̄) � e−νεSν(x) to the last line which gives∣∣∣∣dKν

dν

∣∣∣∣ � ε +
e2νε − 1

2
ln

xn

x1
(A.8)

� ε +
e4ε − 1

2
ln

xn

x1
, (A.9)

where the last inequality is valid for all 0 < ν � 2. Note that the right-hand side of the last
expression has a zero limit as ε → 0. This enables us to choose the value of ε so small that
the right-hand side is less than δ/2. In other words, |dKν/dν| � δ/2.

Next, we express Kν as

Kν =
∫ ν

1

dKν

dν
dν. (A.10)

The inequality above then implies that

|Kν | � 1
2δ|ν − 1|. (A.11)

Finally, considering only the values of ν in the interval [1/2, 2], we have∣∣∣∣ln Aν(x̄)

Aν(x)

∣∣∣∣ = |Kν |
ν

� 2δ|ν − 1|
ν

� δ|ν − 1|, (A.12)

which is the desired result. �

Proof of theorem 4. Without loss of generality suppose that x and y are normalized,
i.e.

∑
xi = ∑

yi = 1. Since the minimum and maximum values of these vectors are
different by the assumptions of the theorem, the strict inequalities are valid at the infinities,
i.e. A−∞(x) > A−∞(y) and A∞(x) < A∞(y). Let Gν be defined as

Gν = ln
Aν(y)

Aν(x)
. (A.13)

By the inequalities (T1)–(T3), we have Gν < 0 for all ν < 1 and Gν > 0 for all ν > 1. At
infinities, Gν approaches to non-zero limits. Moreover, the derivative of Gν at ν = 1 is

G′
1 = σ(x) − σ(y) > 0. (A.14)

Therefore, both of the following quantities are strictly positive:

B = min
ν∈[−∞,1/2]∪[2,∞]

|Gν |, (A.15)

M = min
ν∈[1/2,2]

Gν

ν − 1
. (A.16)

By theorem 5, there are numbers ε1 and ε2 such that D(x; x̄) � ε1 implies that
|ln Aν(x̄)/Aν(x)| � M|ν − 1|/3 and D(y; ȳ) � ε2 implies that |ln Aν(ȳ)/Aν(y)| �
M|ν − 1|/3. We choose ε = min(ε1, ε2, B/3).

Let x̄ and ȳ be arbitrary vectors such that
∑

x̄i = ∑
ȳi = 1,D(x; x̄) � ε and

D(y; ȳ) � ε. Let

Ḡν = ln
Aν(ȳ)

Aν(x̄)
= Gν + ln

Aν(ȳ)

Aν(x)
+ ln

Aν(x)

Aν(x̄)
. (A.17)

Our purpose is to show that Ḡν satisfies the desired properties, i.e. it is negative for ν < 1,
positive for ν > 1 and has a simple zero at ν = 1. Note that D(x; x̄) � ε implies that
|ln Aν(x)/Aν(x̄)| � ε for all ν.
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We consider the following ranges of ν values separately.

(a) For ν � 1/2, we have Ḡν � −B + 2ε � −B/3 < 0.
(b) For ν � 2, we have Ḡν � B − 2ε � B/3 > 0.
(c) For ν ∈ [1/2, 2], we have

Ḡν

ν − 1
� M − 2M

3
> 0. (A.18)

As a result, Ḡν satisfies the desired properties in this interval as well.

Finally, for the inequality (T3), we note that for ν ∈ [1/2, 1), we have

Ḡν

ν − 1
� M

3
. (A.19)

Taking the ν → 1 limit gives the derivative of Ḡν , which is

Ḡ′
1 = σ(x̄) − σ(ȳ) � M

3
. (A.20)

This completes the proof of theorem 4. �
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